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ABSTRACT 

This thesis is a partial analysis of the Naval Space Command statistical 

orbit determination algorithms. Through a process called Differential Correction, 

data from space surveillance radar observation stations is synthesized with 

previously accumulated element sets to maintain accurate orbital object position 

information. Differential Correction is a nonlinear least squares process employing 

statistical techniques to minimize the residual measurement error thereby 

increasing relative position information accuracy. This study focuses specifically 

on the algorithmic methods of solution to the systems of normal equations 

generated by the Differential Correction process. A comparison and analysis of the 

present Naval Space Command method and the singular value decomposition 

method is presented. Algorithmic constructions are presented for both methods 

and problematic areas are highlighted. The principal focus herein is to demonstrate 

the benefit of singular value decomposition when attempting to solve systems of 

equations whose coefficient matrices are dense and nearly singular. These results 

generalize to commonly employed normal equation solution algorithms and are 

intended for further study and possible incorporation by Naval Space Command as 

part of future modernization plans 
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I. INTRODUCTION 

The Naval Space Command maintains a database of element sets for more than 

9,000 objects. Through a process called Differential Correction, data from space 

surveillance observation stations is synthesized with previously accumulated element sets. 

Differential Correction is a nonlinear least squares process employing statistical techniques 

which provide for accurate orbit state estimation.   Radar measurements of an object's 

motion are collected by dispersed observation stations and passed to NAVSPACECOM 

for central processing. NAVSPACECOM receives daily approximately 270,000 new 

observation sets and uses them to update as many as 18,000 element sets. 

NAVSPACECOM performance reports indicate that approximately 98.5% of the element 

sets get updated without manual intervention by their computer software called 

AUTODC. The remaining 1.5% must be manually analyzed. Differential correction is a 

highly complex step-wise process that entails more than 16 separate mathematical 

computations. Even with automated support, this constitutes a significant work load. 

Numerical linear algebra is at the core of the differential correction process. In 

general, data is accumulated, normal equations are formed, and numerical linear algebra 

routines are called to solve the matrix system of normal equations. The method of normal 

equation solution and its associated algorithms are the focus of this analysis. The purpose 

of this thesis is to demonstrate the benefits of using singular value decomposition when 

obtaining least squares solution to systems of normal equations. 





II. BACKGROUND 

A. STATISTICAL ORBIT DETERMINATION 

The NAVSPACECOM differential  correction method is  a sequential batch 

nonlinear least squares statistical process. This is an iterative method which refines the 

stored orbital element sets by applying state adjustments obtained from differential 

correction of the current orbital observations. These state updates are tested for fit in the 

least squares sense and if acceptable applied to the previous nominal state then stored as 

the new nominal orbital element set. The fundamental mathematical steps are now 

outlined; for further details,, see Vallado [1] and Danielson and Canright [2]. 

B. DERIVATION OF THE NORMAL EQUATIONS 

These descriptions have been simplified and are only intended to provide sufficient 

background for the purpose of detailing the algorithmic composition and term-wise 

structure of the normal equation system. For a very detailed description of the entire set 

of NAVSPACECOM procedures refer to Danielson and Canright [2]. 

C. GENERAL LINEAR LEAST SQUARES 

We begin the process by noting that our goal is to solve the generally inconsistent 

system of equations whose matrix representation is 

Ax =b (1) 



by minimizing the residual, r, where 

r = b-Ax (2) 

The method of least squares can be applied to solve such linear systems. Typically 

these systems are highly overdetermined. They have many more rows (m), or equations 

than columns (n) or unknowns and as such are inconsistent. From elementary linear 

algebra [3], we know that the range of the matrix R(A) is the orthogonal complement of 

the null space of its transpose N(AT ). As such, the multiplication AT always produces a 

consistent set of n equations and n unknowns. The only issue with this method however 

arises when some set of the variables from the original linear system are correlated. If this 

happens, the newly formed consistent system will fail to have a unique solution. 

The general method proceeds as follows. Left multiplication of equation (1) yields, 

ATAx = ATb (3) 

Equation (2) implies 

Arr = AT(b-Ax) = 0 (4) 

Equations from the original system may be weighted by applying a diagonal weighting 

matrix. This expands as 

ATWAx =   ATWb (5) 

Residuals from the new, weighted system satisfy 
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ATWr =   ATW(b - Ax) = 0 (6) 

Provided ArWA is nonsingular, we obtain the solution as, 

x =(ArWA)-1ArWb (7) 

This result commonly referred to as the normal equations forms the basis of the least 

squares solution process. 

Differential Correction employs sequential batch techniques when acquiring the 

current state solution from different observational data input sets. This method 

synthesizes the separate batch solutions as follows. 

Given the systems for two batches as 

A,x =   bj  and A2x =  b2 

In order for the single solution to be meaningful, these batch systems must be 

simultaneously solved. This is accomplished by forming the weighted least squares system 

as follows. 

[(A'WAX+^WA^]! =  (ArWb), +(ArWb)2 

The process can be simplified slightly by reusing the solution from Xj 

[(ArWAX+(ArWA)2]x =   (A'WAXxj+CA'Wb^ 



When acquiring the weighted solution simultaneously, different weights may be applied to 

the different sets of equations either by reducing Wi or by scaling (AT WA\ . Notice here 

that the batching process does not significantly alter the basic least squares problem nor 

does it alter the complication arising when some portion of the left hand side constitutes a 

singular matrix. 

D   LEAST SQUARES APPLIED TO OBITAL MECHANICS 

The reader is directed to Danielson and Canright [2] for extensive mathematical 

description and existing code documentation from which the following outline extract was 

taken. 

(i) Assume an initial nominal state 

X nominal 

(ii) Compute the values of the observed parameters Yc at N times corresponding to the 

observations YQ (each observation set contains at a maximum 6 numbers) 

Y = 
VA p;] 

\ .Y,= * 

kJ i kJ 
, where/ = l,...N 

(iii)   Compute  the  residuals   or   "O-Cs"   (70-7c),   (observed   minus   calculated 

parameters). Arrange these as the 6Nx 1 column matrix 



b = 

(iv) Calculate the partial derivatives 

dYc_   6YC   a(r,v) 

dx   a(r,v) ex 

dX} dXs 

dr, dr, 

dY, ^ dYc' dX, dXs 

dr, dr, drK to, &j 
dvK 

drK drK 

. . . » . . dX, dX% 
* " * • 

dv, dv, 
dY« &H c6 &« ^ c6 dXx dXs 

3ri dr, drK dv, OV, 8vK_ dv, 

dXx 

dvK 

dv, 

dxz 

dvK 

ÖTj      dr1 

fflSr,     dX% 

at each observation time and arrange the coordinates of the position and velocity vectors, 

(ri,rj,rK) and (vj,vj,vK), into the following 6Nx8 matrix. 

A = 

dY^ 

as:, 
7 

dXx 

\—\A 
fdY > 

A 

(v) Form the normal equations: 

y^A 
fdY„ 

\dX*A 

ATWAx =   ATWb 



Where W denotes a 6Nx6N weighting matrix. 

Finally 

x = 

x. 

are the differential corrections. Note that ATWA is an 8x8 matrix, and that ATWb is an 

8x1 matrix. 

(vi) Solve the normal equations: 

x =(ArWA)-'ArWb 

(vii) Update the elements: 

X-new —   X>old + X 

(For the first iteration, X0u is Xn0minai.) 

(viii)    Lastly, apply the following RMS test to determine if iterations should continue. 

RMS, - RMSM 

RMS, 
<£ 

where, RMSi   =   -ipir5X    =   V"w5" 

Generally, in nonlinear least squares our goal is to minimize the sum of the 

residuals squared. It is therefore appropriate to use some measure of this as stopping 
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criteria. In the differential correction process, simply cease iteration when the RMS 

"stops" changing.   Since all of the necessary input to the RMS equations has been 

accumulated this proves an efficient method as well. 
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III. NORMAL EQUATION SOLUTION METHODS 

A. GENERAL 

At present the Naval Space Command, Differential Correction process relies on 

Gauss-Jordan elimination with full pivoting for solution to the normal equations. The 

subroutines responsible for processing the complete normal equation solutions are named 

AMA06, AMA04 and AMA03. After the appropriate Differential Correction algorithms 

have formed the standard system of normal equations as described in the previous section, 

AMA06 is called to read in the initial array entries, form the matrix E = ArWA, duplicate 

it and begin preconditioning processes designed to identify singular matrices. Following 

sufficient preconditioning, AMA06 then calls AMA04 which in turn computes E"1. 

Finally, AMA03 is called to apply Gauss-Jordan elimination and solve, 

x = (ATWA)_1 ArWb. The 8x8 matrix ArWA is input as E and the 8xlmatrix ArWb 

is input as G. 

The following section describes specific processes and algorithms used to solve the 

normal equations with Gaussian elimination and with Singular Value Decomposition, 

SVD. Each process is initiated with the previous normal equation derivation. The present 

NAVSPACECOM differential correction process uses the Gauss Jordan elimination 

method with full pivoting. 
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Focusing back on step (vi) of the least squares orbital mechanics process, solution 

of the normal equations, we now compare the present NAVSPACECOM method with 

Singular Value Decomposition method. The refined problem is now, how to acquire the 

best approximation at each step of the nonlinear approximation process so as to ensure 

maximum efficiency of the iterative routine while minimizing the associated rounding 

error in the next iterate? 

B. NAVSPACECOM GAUSS-JORDAN ELIMINATION 

The Naval Space Command uses Gauss-Jordan elimination with full pivoting for 

solution to the system of normal equations. Their algorithm is very similar to the one in 

the book, Numerical Recipes, by Press, et al. [7]. 

Typical Gauss-Jordan with Full Pivoting 

Every Gauss-Jordan step is a left multiplication by an elementary matrix, [3]. An 

overview of the general method of Gauss-Jordan elimination is as follows: 

(i)        Augment the right hand side with the nxn identity matrix. 

(ii)      Perform elementary operations on the augmented, nx2n system until the 

nxn identity matrix is reformed in the first n columns of the matrix 

(iii)      Recall the last n columns of the augmented matrix as the inverse. 
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This method is usually done in place; that is, the actual augmentation is never 

performed. The algorithm simply replaces the original input matrix, in place, with its 

inverse. For this reason, if there is ever a need to recall the original data, a copy of the 

original matrix must be made on input. 

Full pivoting is the process by which rows and columns of the original matrix are 

reordered so that the element largest in magnitude is moved to the upper left corner of the 

matrix. Then, each successive pivot row in maneuvered similarly. Why do this? In the 

computational process, the subsequent rows below the pivot in question are being reduced 

to zero by dividing through by a scaled multiple ofthat pivot. If the process is not begun 

in this manner, that is to say if the element below the pivot is greater in magnitude then the 

pivot, the pivot must be scaled by increasing its magnitude. The scaling factor is the 

element being zeroed out divided by the pivot, and if the pivot is small enough this 

approaches division by zero. In finite precision arithmetic, this can lead to a divide by zero 

condition. If the difference in magnitude of the pivot is sufficiently less than the element 

being zeroed out, the computer can evaluate the expression and return "Not-A-Number". 

Even if the division by zero extreme condition does not occur, scaling the matrix through 

by these sufficiently small quantities inflates the rounding error. How does pivoting 

protect against this? By always scaling so that each successive pivot is the next largest in 

magnitude, the previous process of dividing the subdiagonal elements, results in scaling 

the pivot row by decreasing its magnitude. This has the effect of moving the division 

operations away form the 1/zero condition and deflates the magnitude of rounding error to 

the minimum possible given the actual element-wise composition of the matrix. 
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Partial pivoting is a similar process that allows only row exchanges. While this 

may appear to be a sound concept with less computational overhead, in practice, matrix 

elements, not directly below (in some other column) the pivot being operated on, may still 

be sufficiently greater in value than subsequently available pivot choices. If this occurs, 

the solution is again driven toward a divide by zero condition. By manipulating both rows 

and columns, as in full pivoting, we reduce the likelihood of the divide by zero condition 

to the greatest extent possible. 

When employing the full pivoting routines, the general Gauss-Jordan process is 

augmented by left and right permutation matrices which track the pivot maneuvers. The 

corresponding information is stored as an array and applied during the back solve process 

thereby ensuring correct association of the coefficients and variables from the original 

system of equations. 

It must be noted that the previous pivoting processes only reduce the likelihood of 

algorithm failure. They do not prevent it. In the event of near singular, noninvertible 

conditions, the Gauss-Jordan full pivoting routine has no mechanism to correct or 

compensate. This is an inherent critical deficiency. Failure due to nearly singular input 

matrices routinely occurs when processing least squares systems that are derived from 

closely sampled data. 
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Unique features of NAVSPACECOM Gauss-Jordan 

The following system processes are extracted as reported in the code 

documentation research of Danielson and Canright, [2]. The matrix representation of the 

system of normal equations is loaded as the input matrix E. The input matrix is symmetric 

positive semi-definite by its inherent construction. As such, only values on and to the right 

of the diagonal are read as input. The below diagonal elements are copied from their 

respective symmetric counterparts. At this point a preconditioning routine, AMA06, is 

called. It samples the matrix to determine if any off-diagonal element of E is too large 

relative to its corresponding diagonal elements.    AMA06 tests each Eg > (SJNGjEjjEjj, 

where SING is a parameter value.   If any E? violates this inequality then that row (for 

even-number calls) or column (for odd-number calls) is "inactivated". The threshold 

SING is initially set to near one. Then, if the active matrix is singular, the threshold SING 

is lowered by 10% (attempting to inactivate more rows/columns) and the solution is tried 

again. At this point, a saved copy of the original matrix must be reloaded. The immediate 

effect of this process is to eliminate divide by zero conditions when pivot elements are 

very small. Eventually, either a solution is found, or the whole matrix is made inactive 

(flagged by a return value SING=0), or the threshold gets too small (SING < 0.01) 

indicating that the entire system is singular. In the event that no matrix remains, an error 

condition is returned and all further processing of this set of observational data ceases. A 

tally of these failures is presented as an output report in the batch run statistics. 
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There is a fundamental problem with this preconditioning methodology. Under no 

circumstances are the root causes of the perceived singularities dealt with. Further, in 

terms of computational effort, the computer is permitted to cycle excessively without 

sufficient intermediate checks to determine if the initial perceived singular conditions are 

removable. 

In summary, Gaussian elimination is generally the most computationally efficient 

numerical method available; however, it suffers'from numerical instability under certain 

conditions, which are detailed in Chapter IV, Comparison of Methods. Unfortunately, 

these very same conditions generally arise in systems of normal equations. As noted 

earlier, whenever correlation of variables from the original system equations occurs, the 

resulting matrix Ar A represents a consistent set of equations with redundant solutions. 

These redundant solutions drive the matrix toward a singular condition. 

C. SINGULAR VALUE DECOMPOSITION 

The Singular Value Decomposition, SVD of an arbitrary mxn matrix is the 

factorization of A into USVr, where U and V are orthogonal matrices and Eis the 

rectangular mxn matrix whose first r rows form a square, diagonal submatrix with 

elements ax ■ • -ar , i.e., the singular elements of A with the remainder of Z being zeros. 

The process proceeds generally as follows (See [6]): 

(i)       Reduce the general input matrix A to bidiagonal form B with orthogonal 

matrices U   and V where A = U BVr.   B is nonzero only on its main 
11 11 
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diagonal and first super diagonal.   This is accomplished with Householder 

transformations in the actual algorithms. 

T (ii)       Find the SVD of B, B = U EV   , where Z is the diagonal matrix of singular 
2        2 

values and U   and V   are orthogonal matrices whose columns are the 
2 2 

respective left and right singular vectors.    The Gram-Schmidt process 

produces this result. 

(iii)      Combine  these  decompositions  to  form   A = (UU )E(VV )r.      The 

columns of U = (UU )and V = (VV)are the respective left and right 

singular vectors of A. 

Step (i) reduces the A matrix to bidiagonal form by applying Householder 

transformations on both left and right sides. The symmetry of the original matrix is 

preserved throughout. Step (ii) employs the Gram-Schmidt process to orthogonalize the 

columns of U   and V . Step (iii) reforms the matrix factors. Specific algorithms for 

these subordinate functions are detailed in Golub [5] and Demmel [6]. The SVD 

algorithm simply incorporates them. Another extremely useful secondary benefit of the 

SVD is provided by its fundamental structure. That is the factor matrices U and V have a 

very special structure. They are orthogonal. Where, A = UEVT , the columns of U are 

the eigenvectors of AAT and the columns of V are the eigenvectors of ATA , Strang, 

[3].    Further, orthogonal matrices have the nicety that U T U = UU T = I. This infers 
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directly that when solving the system of normal equations, 

Ax    = b as   U E V T x   = b   the respective transposes, UT  and V, are left 

multiplied yielding x = V2+UTb. Interestingly enough, no actual inverse matrices have to 

be calculated.   Further, the transpose ofU and V can be done in place. The real benefit is 

the complete absence of rounding error when taking the transpose of a matrix. 

The problem with the Gauss-Jordan method is the requirement for the columns of 

A to be independent. As described in detail in the previous section, when ill-conditioned 

matrices are input, a great deal of computational effort is required in preconditioning the 

matrix. Without this preconditioning, even nonsingular but very ill-conditioned matrices 

may cause algorithms to break down. The computer simply perceives the matrix to be 

singular to its level of machine precision. 

The key to SVD's computational stability lies in its orthogonality. Matrix rank 

problems arise frequently in computer arithmetic. Determining the rank of an ill- 

conditioned matrix can be challenging in the presence of roundoff error and noisy data. 

The SVD allows for practical dealing with numerical rank deficiency 

The following theorem is taken from Golub, [5]. See [5] for a detailed proof. The 

theorem provides the detail necessary for determining how "close" the given A matrix is to 

one of lower rank. The 2-norm here is the matrix derivation of the vector Euclidean norm 

[3] defined as follows. 

least upper bound     (A)=max 
"'AxT 

v Fll j 
where      |IA| < least upper bound(A)^ 
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Theorem 

Let the SVD of A eRmxn be given. Ifk<r = rank(A),   and 

i = \ 

then, 

mm      A-B    = 
II II2 

A_AJ     ~<Tk + \ *ll2 

rank(B) = k 

This striking result offers a method of computation using stored values which 

specifically reveal the magnitude of the degenerate numerically singular condition of the A 

matrix. The details of this theorem indicate that the smallest singular value of A is the 2- 

norm distance of A to the set of all rank deficient matrices. Iteration is no longer required 

to determine the degree of singularity. 

Now, let's look at an example of how to make the most out of ill-conditioned least 

squares systems with the SVD. See Strang [3] for more on this. In general, the least 

squares problem has one very stringent requirement, the columns of the A matrix must be 

independent or the rank of A must be equal to n, the number of columns. This is often 

referred to as full rank. If not, A is not invertible then Ax = b can not determine x. As 

described earlier, any vector from the null space of A can be added to x. Now let's 

examine what happens. There are two possible situations, either the rows of A may be 

dependent or the columns of A may be dependent. The first situation implies the system 

of equations may have no solution and the second situation implies that any solution is not 

unique.   The dependent column case makes this a particularly difficult yet interesting 

19 



problem. As discussed earlier, when we have dependent rows the solution we seek may 

be outside the column space of A. Our course of action now becomes simply project b 

onto the column space of A. Now the greater challenge. After making that projection we 

find A has dependent columns and the solution is not unique. At this point, we must now 

employ the criteria for selecting the optimal solution and choose the one with minimum 

length. 

Consider the following example: 

A = 

where A is diagonal with dependent rows and columns. 

Here we see the columns all end in 0.   As per case (i), the closest vector to 

b = (blyb2,b3,b4 ) is p = (&!,&,,0,0)the projection onto the column space of A.    The 

magnitude of error here is b = (0,0,&3,Z>4)the perpendicular to the columns. The best 

solution now is attained when we solve the first two equations. Since the last two 

equations indicate 0 = b2 and 0 = b4, the error in those equations cannot be reduced but 

the error in the first two will be zero. 

<*l 0 0 0" 

0 Ö-2 0 0 

0 0 0 0 

0 0 0 0_ 

Ax = p is 

0 0   0" Xi bi 

^2 0   0 x2 b2 

0 0    0 Xi 0 

0 0    0_ _XA_ 0_ 

(8) 
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Now the challenge, the dependent columns imply x is not unique! The first two 

components are — and —, but x3 andx4 are completely arbitrary. Now apply the 

minimum length criteria and see that these arbitrary components must be identically zero 

to attain the best approximation. 

That is, x   = 

\- 
0-1 

h   

°2 
0 

_ 0 

1 

=      0     — 

0 

0 

0 

0 

0 0 
h 

0 0 b2 

0 0 
IA 

0 0_ 

(9) 

The minimum length solution to Ax = p is, x+ , Strang [3].Again, the useful result is 

specifically the equation that reveals x+ . This process displays the matrix, which yields 

the desired result, 

7/A = 

CT1 0 0 0 

0 <*2 0 0 

0 0 0 0 

0 0 0 0 

then A+ = 

cr. 

0     — 

0 

0 

0-2 

0 

0 

0 0 

0 0 

0 0 

0 0_ 

and x+=A+b = 
0-2 
0 

0 

(10) 
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A+ is referred to as the pseudoinverse and is the matrix which provides for solution to the 

nearly singular system of Ax = b , Strang, [3]. 

This entire process has one sticking point.  S+ is the pseudoinverse described 

earlier. Now, the magnitude of rounding error in applying the inverse process is limited to 

the sum of the errors when inverting the individual diagonal elements, cr .   Each ai is the 

square root of each nonzero eigenvalue Xi from both AAT and ATA .Now, the fine 

point, what happens when cr. is sufficiently small to induce a divide by zero condition 

when taking the pseudoinverse? The reciprocal of cr. is set to to zero by the code. Press, 

et. al., [7], denote this procedure as editing the singular values. The logic is sound. 

Recall the original formulation of the linear system. When redundant solutions (singular 

conditions) are encountered as a result of variable correlation, the matrix is unable to 

distinguish between the different basis functions and the associated distribution of the 

input data. By setting the reciprocal of any sufficiently close to zero singular value to 

zero, we effectively add. a zero multiple to the fitting parameters as opposed to some large 

combination of the basis functions that are degenerate to the best fit, [7]. Further, if any 

nonzero singular value is very small, its reciprocal should also be set to zero. This term is 

most likely residual from rounding error and detracts from the optimal solution. 

A rule for determining the editing tolerance of singular values is given by Press, 

et. al., [7] as follows. Set to zero any singular value, cr. when, 
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The ratio < Ns 

where N is the column length dimension and s is the machine precision. 

Consider the following example least squares problem which illustrates the 

mathematical principles of the algorithm. In this example A is assumed symmetric on 

input just as in the Differential Correction form. 

Let A = 

3 -2   2' 1 

-2 4     0 and b= 1 

2 0     2 1 

where 

17 -14 10 

ATA = -14 20 -4 

10 -4 8 

The eigenvalues 

T, 

X =36=6W =6 
i i 

A  A - X\  are  X = 9=3 =>cx = 3 
2 2 

X =0=02=>a =0 
3 3 

whose corresponding eigenvectors are 

v = — 1     3 >v =~r 
T 

1 
"2 " 

2 
■V==J 

1 

2j -2 

Now A = UXV'or AV= U£ so 
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1    A l    A u =—Av ,    u  =—Av 
i     a       >        2     <T       2 

1 2 

u 

3-2   2 

-2     4     0 

2       0     2 

|"2" 
1      1 

"12" 
i 

2 

-2 
3~18 

12 
~3 

-2 

[ 1 _ L6J L[ J 
Similarly 

u  =- 
2 

-2 2 

4 0 

0     2 

IT 
1    1 

"3" 
l 
T 

2 
~3 ~9 

3 
3 

2 

L2. L6J 2 

Now for the zero singular value we must solve the homogeneous problem 

A ru = 0 for u. 

3 -2   2 o" 
-2 4     0 0 -> 

2 0     2 0 

1 =1 
3 

0 1 

0     0 

2 

3 0 
1 

0 
2 
0 0 

M- Z5 arbitrary 

but, u =—u       and    u =-u 
2     2   3 ! 3 

50, 

' -1 r 2 ] 
U   =«-, 

3          J 

1 

2 

_ 1 
~3 

i 

1 -2 
L           J 

Now lets refit the components. 
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T 

6 0 0 V 
i 

u u u 0 3 0 T 
V 

1 1 2 3J 2 

0 n 0 „T 
V 

3_ 

A = U£Vr 

This is simply the sum of rank one matrices. 

Now, 

6u    3u     0 
1      1 2 

6u vr    3u vr    0vr 

11 2    2 3 

r — L      ~ J. 

" 2 -1" 
3 3 

-2 -2 6   0 

3 3 0   3 
1 -2 

. 3 3 . 

2 -2      1 

3 3        3 
-1    -2    -2 

Now for the least squares piece. 

Ax=b and A = UEVr so     SVrx = ifb or x = VS_1Urb 

S  ' is the pseuodoinverse. Its structure was detailed earlier. 

Now applying equation (8) to the original right hand side yields, 

x = 

"i o r 
9          9 

"2" 

PI 9 

o 1 I 
9    9 

1 = 
1 
3 

1     1     1 1 7 
.9    9    6. .18. 

(11) 

This is the least squares solution of minimal length. 

Now the test, if x is orthogonal to N(AT), i.e., really the minimal length solution 

and u3 is an element ofN(AT) then orthogonality demands that their dot product equal 

zero. 
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x.u3 = 

"2" " 2 " 
9 3 
1 1 
3 3 
7 -2 

.18. _ 3 . 

54    54     54 

This example is easily extended to matrices of greater dimension. 
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IV. COMPARISON OF METHODS 

A. GENERAL 

The procedures used for computational comparison were NAVSPACECOMs 

algorithms AMA03, AMA04, and AMA06 coupled with a process driver program and the 

standard SVD algorithms as taken from Numerical Recipes by Press, et. al., [7]. During 

research of the actual NAVSPACECOM code, it was found that Numerical Recipes was 

referenced repeatedly throughout. This observation set the precedence for applying the 

basic SVD codes of Numerical Recipes for computational analysis. This common ground 

should serve to standardize any resulting code development. 

It should be noted that throughout chapter 15, Numerical Recipes [7] the SVD is 

recommended for least squares problems. Citing the following, "...solution of a least 

squares problem directly from the normal equations is rather susceptible to roundoff 

error." And, "In some applications, the normal equations are perfectly acceptable for 

linear least squares problems. However, in many cases the normal equations are very close 

to singular." The authors detail with significant correlation the precise difficulties that 

generally arise in Differential Correction. They go on further detailing the exact 

complication the routine AMA06 attempts to eliminate. The following excerpt from 

Numerical Recipes sums up the exact nature of this entire analysis: 
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A zero pivot element may be encountered during the solution of the normal 
equations, with Gauss-Jordan, in which you get no solution at all. Or, a very small pivot 
may occur in which case you typically get fitted parameters ak with very large 

magnitudes that are delicately balanced to cancel out almost precisely when the fitted 
function is evaluated. 

Why does this commonly occur? The reason is that, data do not clearly 
distinguish between two or more basis functions provided. If two such functions or two 
different combinations of functions happen to fit the data equally well - or badly - then 
the matrix A, is unable to distinguish between them and becomes singular. There is 
irony in the fact that least squares problems are both overdetermined (number of data 
points greater than the number of parameters) and underdetermined (ambiguous 
combinations of parameters exist). The ambiguities can be extremely hard to notice a 
priori in complicated problems. 

The SVD gives exactly what we need. In the overdetermined system SYD 
produces a solution that is the best approximation in the least squares sense. In the case 
of the underdetermined system, SVD produces a solution whose values (the ak 's) are 

the smallest in the least squares sense also what we want. When some combination of 
the basis functions is irrelevant to the fit, that combination is driven down to a small, 
innocuous value, rather than pushed up to delicately canceling infinities. 

B. SENSITIVITY ANALYSIS 

The following sections present information that details the inner workings of the 

individual numerical solvers. The concept to focus on deals with the aspect of matrix 

sensitivity. The following simplified example details the problem explicitly (see Nyhoff 

[16]). 

Ax = b is 
2 6 

2    6.0000003 

8 

8.0000003 

The solution is obviously   x = Now perturb the right hand side very slightly. 
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Ax = b* is 
2 6 
2   6.0000003 

8 
7.9999994 

Now the not so obvious solution is    x = 
10 
-2 

, where the very small perturbation in the 

right hand side has altered the solution on the order of 107 times the constant term of the 

second equation. 

In performing rounding error analysis, we note that computers operate in floating 

point arithmetic. That is, they convert every problem into a "nearby" problem perform 

calculations and then convert back the answer.   The symbol s, called machine epsilon 

refers to the computer's ability to distinguish between two consecutive binary 

representations of actual input values. When the relative representation of two 

consecutive numbers exceeds the computer's ability to distinguish between them, 

( II a- b\<e) we say an underflow has occurred in the calculation sequence. 

The following method, known as matrix perturbation theory, helps to analyze the 

nature of error in order to minimize it through algorithm refinement.   Errors are 

accumulated primarily from two sources. First there may be measurement error contained 

within the original input data, and second, the algorithm itself may cause error through its 

internal approximations while processing calculations. For excellent derivations of the 

most commonly required error measurement techniques, see Demmel [6]. 
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The measure of the accumulated error is referred to as the condition number of a 

matrix. Simply put, the condition number indicates the precise level of sensitivity a matrix 

has relative to these types of very small perturbations. 

To summarize, an example taken from Strang [3] is in order. It directly illustrates 

the short fall in the present NAVSPACECOM code methodology of scaling the input 

matrix by the value 25,000,000. 

Begin by consider the linear system Ax = b, now perturb the right hand side by 

8 b. These errors might have come from the observational data or roundoff. The change 

is small but the direction of change can not be controlled. The solution is subsequently 

changed from x to x + 8 x. Now our system has become A8x = <5b. We now must 

estimate the resulting perturbation 8 x = A_1<5b. There will be a large change in the 

solution when A-1 is large, i.e. A is nearly singular. Now consider our symmetric matrix 

with positive eigenvalues where 0</l] <X2<---<Xn. Any vector <5b is a combination of 

the corresponding unit eigenvectors xl,--,s.n. Let s indicate a very small change. 

If   <5b = £x,        then      8x = —. 

The error in |<5b| is amplified by —, which is the largest eigenvalue of A '. The 

amplification is greatest when \ is close to zero. Thus nearly singular matrices are the 
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most sensitive. The serious drawback with this measure of sensitvity appears when scaling 

is introduced. Multiplying the matrix by a large scalar also scales the eigenvalue by the 

corresponding amount. This makes the matrix appear much less singular. This rescaling 

can't however make an ill-conditioned matrix well. It is true Sx will be smaller by the 

IN scale factor however so will the solution to x = A b. The relative error \-j- .stays the 
INI 

same. The factor ||x| in the denominator normalizes the problem against such trivial 

rescaling. There is a corresponding normalization of |<5b|. The problem is to compare the 

l&ll relative change with the relative error 
x 

At this point, I refer to the following theorem as taken from Strang, [3]. 

Theorem 

For a positive definite matrix, the solution   x= A-1b and the error Sx= X~x 5b always 

satisfy, 

II   II ^   N J II« II «r  m 
x > iLJL and <5x < 

K K 

Therefore the relative error is bounded by 
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jNI^- IM 
\ m 

X      X 
The ratio c - —^ = —^^ is called the condition number of A. 

This analysis can be applied to the example given previously. 

C. ERROR ANALYSIS 

The following analysis applies to the least squares system. The established error 

bounds hold regardless of solution method. A fundamental rounding error analysis 

follows directly from the previous sensitivity analysis. See Golub, [5] and Demmel, [6] for 

very complete presentations of both rounding and backward error analysis 

The tradition definition of a vector or matrix norm holds throughout the following 

analysis. See Strang [3] as required. Where the symbol ||. | appears in equation form, 

consistent use of the chosen norm is implied throughout. Condition number is as defined 

previously. 

Given the linear system   Ax = b where   r - b - Ax . Where A is nxn 

nonsingular, x is the computed solution, and r is the residual. Letxe be the exact solution 

and e the error. 

Then  r =b - Ax = Axe - Ax = A(xe - x) 
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or r - Ae 

Given A nonsingular then e = A V. Taking consistent norms of the equations yields the 

following inequalities. 

\e\\<  A"1 H  and \\A\\\\e\\>\\r 

Relating these inequalities bounds the error as follows, 

A-'IH * HI * § (12) 

Now the exact solutions form, 

x, = A lb   and   Ax„ = b 

Where 

xl< A"1 b    and    A flxJ > b! 

We can now bound the exact solution. 

A"1 llbll   > llxjl > 

Now divide inequality (10) through by ||xj and form 
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A ' IHI IUI ||r| 
 EJi    > JUL > 

Ax 

Substituting llxj in the left denominator by f-\ and in the right denomination by 
A 

A x jlbl! the expression for relative error now becomes, 

AilMI 
A A"1 llllbll 

(13) 

Where   TMT is the relative error. 

Now recalling that the condition number of the matrix A can also be expressed as 

cond(A) = A 111 All, which is required for analysis of methods that do not return 

eignevalue information, equation (11) becomes, 

f\u\\ 
cond(A) 

KPV 
>J-4r > 

1 f\\j\\ 

xj     cond(A) KAJ 

This formulation is convenient in that it allows for testing of the maximum and 

minimum associated errors for any given output as initiated by the condition of the matrix 

system. For more specific information on relative error and on absolute error given 
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machine dependent performance information see Engeln-Mullges and Uhlig [7]. This 

analysis can be applied to the given test matrices. 

D. COMPUTATIONAL EFFICIENCY 

Flops, or floating point operations, are the measure of algorithm efficiency. While 

they do not necessarily indicate the actual processing time, as different computers do 

internal processing differently, they do give an excellent measure of the magnitude of total 

number of computer calculation required by an algorithm as related to the functional input. 

In general, flop counts are obtained by summing the number of arithmetic 

operations from the most deeply nested algorithm statements. As an example of the 

accounting notice, a dot product operation of length n involves n multiplications and n 

additions. It therefore requires 2n flops. For matrix multiplications, the general form is 

C(iJ) = A(i,kyB(k,j) + C(i,j) 

This process requires 2mnp flops where C e R"*",   A eR"^,   B e R**". 

Applying the above flop counting procedure, the following flop count estimates 

are given for each algorithm as related to the matrix dimension [5]. 
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ALGORITHM FLOP COUNT 

Gauss-Jordan 
2    n> 

mn H  
3 

SVD 
(U,Z,V) 

4m2n + Smn2 + 9«3 

SVD 

(E, V only) 

Amn2 + 8«3 

Minimum requirement for least squares 

This does not take into account specialized storage techniques and factorizations 

when dealing with specific subprocess forms that may be optimized. In this respect, these 

estimates would be considered worst case. In some instances the total flop count of a 

particular subform may be cut by nearly half the indicated estimate. While these methods 

yield respectable approximations of the computational cost, they do not provide actual run 

time analysis. Specific algorithms can be made extremely efficient when optimized for a 

particular computer. 
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V. CONCLUSIONS 

A. SUMMARY OF FINDINGS 

Testing of the actual NAVSPACECOM code and the SVD code was 

accomplished through PC based Digital Visual Fortran 6.0. All NAVSPACECOM source 

code was compiled and linked using the visual Fortran development environment. As 

noted earlier SVD source codes were adopted directly from Numerical Recipes [6]. 

Driver programs for both software suites were developed as adoptations of the LAPACK 

[9] and Numerical Recipes source code for advanced linear algebra. Test matrices were 

generated using MATLAB and placed in standard text format for file upload by the driver 

programs. All Fortran source code was version 77. The computer system used was a 

Micron, 300 MHz, Pentium PH. 

The test matrices indicated at Appendices A and B were used to determine how 

well the two routines compared when attempting to solve highly singular and known 

singular input matrices. As expected, the NAVSPACECOM code returns the SING = 0 

error and does not continue further. The SVD algorithm on the other hand returns. 

Further, upon analysis of the factored structure, the reconstructed matrices are within one 

order of magnitude of the original input. The differences are due to roundoff error. 

While the results presented in the output of the SVD algorithm may not look so 

appealing at first glance, it is important to note,that the present Gauss-Jordan, 

37 



NAVSPACECOM routines return no output at all. This is much more encouraging. As a 

minimum, even with the ridiculously singular nearly impossible input matrices, the SVD 

routine successfully returned the best approximation as the desired solution. At this point 

the differential correction subroutine now possesses an excellent starting point to continue 

processing this observational input set. The nonlinear method may then still converge. 

Had the NAVSPACECOM routine been allowed to process this set, the entire set would 

have been discarded based solely on the coincidental fact that the input matrix derivation is 

singular beyond the computer's ability to distinguish otherwise. The macro effect of this 

NAVSPACECOM code shortfall is that potentially accurately derived observational data 

is now discarded. This will certainly effect the long-term distribution of the accumulated 

error in the orbital element set. 

B. RECOMMENDATIONS 

The potential for improvement in NAVSPACECOMs differential correction 

process through integration of an SVD algorithm which replace existing subroutines 

AMA03, AMA04, and AMA06 exists.   The only way to verify the magnitude of 

improvement, however, is to implement a test routine. The evidence presented herein 

indicates that further study should be pursued. 

C. CONCLUSION 

The results of this study are not all inclusive. Only the worst possible input matrix 

conditions were modeled.    The frequency of occurrence of this type of input would 
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certainly have to be taken into consideration when deciding whether to upgrade the 

present process. Differential Correction involves highly complex series of numerical 

routines each with its own influence on the over all solution process. My findings indicate 

that some improvement may occur through reduced processing time and the numerical 

error of the actual values returned in the update state vectors. Additionally, it is worth 

pointing out that many modern statistical regression-fitting packages have begun to use 

more sophisticated linear algebra solvers for similar reasons as those addressed herein. 

While at best the SVD algorithm is approximately 24 times more computationally 

expensive in flops, it has the advantage of not requiring cyclic preconditioning to start the 

solution process. The present NAVSPACECOM routine has the potential to cycle for 

significant periods prior to achieving SING = 0 stop criteria. If significant numbers of 

orbital element sets cause the AMA06 routine to process several times through before 

either failing or calling the solver, the relative difference in run time between the two 

methods may be very small. This aspect of the study will require actually run time 

information to determine the flop count delta. 

SVD solutions exhibit less error in each iterate as a result of their "best 

approximation ". It is possible that over time, the resulting thorough evaluation of the 

observational data by an SVD synthesizing algorithm could effectively decrease the error 

in actual known position information as measured by the difference in the orbital element 

set and the corresponding test data. 
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APPENDIX A 

Test Case 1. Singular A Matrix 

Highly singular A matrix: col(4) = (col(l)+col(3))/2 and col(8) = (col(2)+col(7))/2 

Constructed random uniform (0,1) 

Matrix A: 

0.9688    0.1310    0.5620    0.7654   0.5979    0.0631    0.7666 0.4488 

0.3557    0.9408    0.3193    0.3375    0.9492    0.2642   0.6661 0.8035 

0.0490    0.7019    0.3749    0.2120   0.2888    0.9995    0.1309 0.4164 

0.7553    0.8477    0.8678    0.8116    0.8888    0.2120    0.0954 0.4715 

0.8948    0.2093    0.3722   0.6335    0.1016    0.4984    0.0149 0.1121 

0.2861    0.4551    0.0737    0.1799   0.0653    0.2905    0.2882 0.3716 

0.2512   0.0811    0.1998   0.2255    0.2343    0.6728    0.8167 0.4489 

0.9327    0.8511    0.0495    0.4911    0.9331    0.9580   0.9855 0.9183 

Symmetric, nxn matrix P = ATA. 

3.4538 2.2680 1.7824 2.6181 2.6412 1.9559 2.2782 2.2731 

2.2680 3.0953 1.5425 1.9052 2.7916 2.2445 1.9391 2.5172 

1.7824 1.5425 1.4978 1.6401 1.6543 1.0673 1.0142 1.2783 
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2.6181    1.9052    1.6401    2.1291    2.1478    1.5116 1.6462    1.7757 

2.6412    2.7916    1.6543    2.1478    3.0720    1.8867 2.3445    2.5680 

1.9559    2.2445    1.0673    1.5116    1.8867   2.8209 1.9602    2.1023 

2:2782    1.9391    1.0142    1.6462   2.3445    1.9602 2.7791    2.3591 

2.2731    2.5172    1.2783    1.7757    2.5680    2.1023 2.3591    2.4382 

Decomposition Matrices: 

Matrix U 

-0.405972    0.466532   -0.366483    0.180020   -0.532409   -0.026839 -0.006785    0.408157 

-0.387027   -0.208141    0.614596   -0.035119   -0.301571   -0.411911 0.408982    0.006625 

-0.238695    0.389374    0.258549    0.159762    0.718607   -0.126578 -0.006750    0.408139 

-0.322333    0.427960   -0.053982   0.169871    0.093150   -0.075934 0.013911   -0.816422 

-0.404391    0.039450    0.240801   -0.441264  -0.010121    0.762960 -0.001406    0.000463 

-0.326910   -0.511282   -0.089709    0.724015    0.092756    0.301448 -0.000586    0.000171 

-0.346071   -0.284110   -0.593342   -0.385717    0.303011   -0.199784 0.408545    0.006797 

-0.366547   -0.246130    0.010611   -0.210450   0.000580   -0.308105 -0.815805   -0.013969 

Diagonal of Matrix E 

16.942978    0.000000    0.000000    0.000000    0.000000    0.000000 0.000000    0.000000 

Matrix V-Transpose 
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-0.405972   -0.387027 -0.238695   -0.322333 -0.404391 -0.326910 -0.346070   -0.366547 

0.467637   -0.210013 0.388574    0.428113 0.038740 -0.511046 -0.282277 -0.246149 

-0.370840    0.614798 0.254242   -0.058314 0.255496 -0.115354 -0.581027    0.016870 

0.169917   -0.013430 0.165458   0.167672 -0.432943 0.720162 -0.406542 -0.210019 

-0.575737   -0.269208 0.669202    0.201179 -0.065735 0.073310 0.312403 0.021403 

0.261994   -0.244425 0.394398   -0.727229 0.369304 0.160414 -0.054058 -0.148875 

-0.223596   -0.360038 -0.310865    0.334620 0.664486 0.262515 -0.175497 -0.265547 

0.000238   -0.407559 0.000561   -0.000351 -0.001333 -0.000496 -0.407884    0.817022 

Check product against original matrix: 

Original P Matrix: 

3.453800   2.268000 1.782400   2.618100 2.641200 1.955900 2.278200 2.273100 

2.268000    3.095300 1.542500    1.905200 2.791600 2.244500 1.939100 2.517200 

1.782400    1.542500 1.497800    1.640100 1.654300 1.067300 1.014200 1.278300 

2.618100    1.905200 1.640100   2.129100 2.147800 1.511600 1.646200 1.775700 

2.641200    2.791600 1.654300    2.147800 3.072000 1.886700 2.344500 2.568000 

1.955900   2.244500 1.067300    1.511600 1.886700 2.820900 1.960200 2.102300 

2.278200    1.939100 1.014200    1.646200 2.344500 1.960200 2.779100 2.359100 

2.273100    2.517200 1.278300    1.775700 2.568000 2.102300 2.359100 2.438200 

Product Matrix = U*E*(V-Transpose): 
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2.792422 2.662113 1.641832 2.217128 2.781547 2.248604 2.380400 2.521245 . 

2.662113 2.537884 1.565216 2.113665 2.651745 2.143672 2.269318 2.403590 

1.641832 1.565216 0.965332 1.303582 1.635438 1.322089 1.399580 1.482391 

2.217128 2.113665 1.303582 1.760356 2.208493 1.785347 1.889991 2.001818 

2.781547 2.651745 1.635438 2.208493 2.770714 2.239847 2.371130 2.511426 

2.248604 2.143672 1.322089 1.785347 2.239847 1.810694 1.916823 2.030238 

2.380401 2.269319 1.399580 1.889991 2.371130 1.916823 2.029173 2.149235 

2.521245 2.403590 1.482391 2.001818 2.511426 2.030238 2.149235 2.276402 
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APPENDIXE 

Test Case 2. Extreme Singularity 

Singular P matrix: col(l) = col(2)+col(3) + ... + col(8) 

1.000000 0.900000 0.090000 0.009000 0.000900 0.000090 0.000009 0.000001 

0.900000 0.900000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.090000 0.000000 0.090000 Ö.000000 0.000000 0.000000 0.000000 0.000000 

0.009000 0.000000 0.000000 0.009000 0.000000 0.000000 0.000000 0.000000 

0.000900 0.000000 0.000000 0.000000 0.000900 0.000000 0.000000 0.000000 

0.000090 0.000000 0.000000 0.000000 0.000000 0.000090 0.000000 0.000000 

0.000009 0.000000 0.000000 0.000000 0.000000 0.000000 0.000009 0.000000 

0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 

Decomposition Matrices: 

Matrix U 

-0.726830 -0.298545 0.377237 0.221507 -0.175290 0.150237 -0.127672 0.348738 

-0.685806 0.302705 -0.443863 -0.223180 0.175290 -0.150237 0.127672 -0.348738 

-0.037087 0.334128 0.811978 -0.190945 0.175288 -0.150237 0.127672 -0.348738 

-0.003546 -0.836417 0.031208 -0.329137 0.174926 -0.150235 0.127672 -0.348738 

-0.000353 -0.089017 -0.019792 0.864991 0.288233 -0.149928 0.127670 -0.348738 
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-0.000035   -0.008940   -0.002062 0.089682 -0.886388 -0.261431 0.127375   -0.348738 

-0.000004   -0.000894   -0.000207 0.008994 -0.091411    0.899086 0.248332   -0.348622 

0.000000   -0.000099   -0.000023 0.001000 -0.010180    0.102642 -0.916846   -0.385685 

Diagonal of Matrix £ 

1.860190    0.000000   0.000000 0.000000 0.000000 0.000000 0.000000    0.000000 

Matrix V-Transpose 

-0.676744   -0.731343   -0.084492 -0.003917 -0.000497 -0.000049 -0.000005   -0.000001 

0.634569   -0.521247   -0.570616 -0.004328 -0.001723 -0.000168 -0.000017   -0.000002 

0.187067   -0.224736    0.406687 0.865145 0.024989 0.002324 0.000231    0.000026 

0.322910   -0.377922   0.708234 -0.499791 -0.038919 -0.001936 -0.000172  -0.000019 

0.008663   -0.010371    0.016396 -0.041196 0.998458 0.030457 0.002268    0.000243 

0.000000    0.000017   0.000174 0.001730 0.030609 -0.999175 -0.026540   -0.002122 

0.000000   -0.000001   -0.000015 -0.000147 -0.001470 -0.026647 0.999247    0.028168 

0.000000    0.000000    0.000001 0.000014 0.000138 0.001378 0.028215   -0.999601 

Check product against original matrix: 

Original Matrix P: 

1.000000    0.900000   0.090000 0.009000 0.000900 0.000090 0.000009    0.000001 

0.900000    0.900000    0.000000 0.000000 0.000000 0.000000 0.000000    0.000000 

0.090000    0.000000   0.090000 0.000000 0.000000 0.000000 0.000000    0.000000 

0.009000    0.000000    0.000000 0.009000 0.000000 0.000000 0.000000    0.000000 
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0.000900 0.000000 0.000000 0.000000 0.000900 0.000000 0.000000 0.000000 

0.000090 0.000000 0.000000 0.000000 0.000000 0.000090 0.000000 0.000000 

0.000009 0.000000 0.000000 0.000000 0.000000 0.000000 0.000009 0.000000 

0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 

Product U*£*(V-Transpose): 

0.914987 0.988808 0.114237 0.005295 0.000672 0.000067 0.000007 0.000001 

0.863342 0.932996 0.107789 0.004997 0.000634 0.000063 0.000006 0.000001 

0.046687 0.050454 0.005829 0.000270 0.000034 0.000003 0.000000 0.000000 

0.004464 0.004824 0.000557 0.000026 0.000003 0.000000 0.000000 0.000000 

0.000444 0.000480 0.000055 0.000003 0.000000 0.000000 0.000000 0.000000 

0.000044 0.000048 0.000006 0.000000 0.000000 0.000000 0.000000 0.000000 

0.000004 0.000005 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 

0.000000 0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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